Бутан, получение, свойства, химические реакции

Что такое бутан?

Бутан – это так называемый сжиженный природный (нефтяной) газ, который получается при перегонке нефти. 

Как и пропан, бутан по своей природе является газом, но это относится не ко всем горючим газам. Бутан становится жидким при -0,5 градусах Цельсия или ниже, в то время как пропан становится жидким только при -40 градусах Цельсия. Другим большим отличием между бутаном и пропаном является давление: при температуре 20 градусов Цельсия бутан имеет давление около 1,2 бар, тогда как пропан не менее 7,0 бар.

Оба изомера бутана являются газами при комнатной температуре, потому что (n-) бутан имеет температуру плавления -138 C и температуру кипения -0,5 C, а метилпропан (изобутан) имеет температуру плавления -160 C и температуру кипения −12 °С. Бутан практически не растворим в воде (90 мг / л). Оба изомера ведут себя схожим образом: они легко воспламеняются, не обесцвечивают бромную воду и раствор перманганата калия, подвергаются воздействию только галогенов хлора и брома под воздействием света.

Зачем смешивают пропан и бутан в автономной системе газоснабжения

Учитывая физико-химические характеристики насыщенных углеводородов, их применение во многом зависит от климатических условий. Сжиженный бутан в чистом виде не будет работать при отрицательных температурах. Тогда как применение чистого пропана противопоказано в условиях жаркого климата, поскольку высокая температура вызывает чрезмерное повышение давления в газовом резервуаре.

Так как для каждого региона нецелесообразно производить отдельную марку газа, с целью унификации ГОСТом предусмотрена смесь с определенным содержанием двух компонентов в рамках установленных норм. Согласно ГОСТ 20448-90 максимальное содержание бутана в данной смеси не должно превышать 60%, при этом для северных регионов и в зимнее время года доля пропана должно быть не меньше 75%.


Процентное соотношение газов в разное время года

Кстати, больше статей нашего блога о газификации — в этом разделе.

Последствия и проблемы со здоровьем

Вдыхание бутана может вызвать эйфорию , сонливость , потерю сознания , асфиксию , сердечную аритмию , колебания артериального давления и временную потерю памяти при злоупотреблении непосредственно из контейнера под высоким давлением и может привести к смерти от удушья и фибрилляции желудочков . Он попадает в кровоток и в считанные секунды вызывает интоксикацию. Бутан является наиболее распространенным летучим веществом в Великобритании и был причиной 52% смертей, связанных с растворителями, в 2000 году. Распыляя бутан прямо в горло, струя жидкости может быстро охладиться до -20 ° C (-4 ° C). F) путем расширения, вызывая длительный ларингоспазм . Синдром « », впервые описанный Бассом в 1970 году, является наиболее частой причиной смерти, связанной с растворителями, приводя к 55% известных смертельных случаев.

Реакции

Промышленное использование иллюстрирует тенденцию бутадиена к полимеризации. Его восприимчивость к реакциям 1,4-присоединения иллюстрируется его гидроцианированием. Как и многие диены, он претерпевает катализируемые палладием реакции, протекающие через аллильные комплексы. Он является партнером в реакциях Дильса-Альдера , например, с малеиновым ангидридом с образованием тетрагидрофталевого ангидрида .

Как и другие диены, бутадиен является лигандом для комплексов низковалентных металлов, например производных Fe (бутадиен) (CO) 3 и Mo (бутадиен) 3 .

Строение (бутадиен) трикарбонила железа .

Основные физико-химические свойства компонентов СУГ и продуктов их сгорания

К основным характеристикам СУГ относят:

  • температуру испарения/конденсации;
  • температуру воспламенения;
  • теплоту сгорания;
  • плотность;
  • объемное расширение.

Важными характеристиками являются пределы взрываемости при смешении с воздухом, быстрота распространения огня при горении, условия для полного сгорания.

Температура испарения/конденсации

При нормальном давлении составляет:

  • для пропана – минус 42 °C;
  • для бутана – минус 0,5 °C.

Если температура газов поднимается выше этих значений, они начинают испаряться, при опускании ниже – конденсироваться. Как правило, сжиженный газ поставляется в форме смеси (бутан+пропан). Поэтому фактическая температура испарения/конденсации зависит от их соотношения.

Обычно газ, поставляемый зимой, сохраняет испаряемость до минус 20 °C. Но иногда производитель поставляет смесь с повышенным количеством бутана. Это приводит к тому, что даже при небольшом понижении температуры ниже нуля газ перестает испаряться.

Температура воспламенения

Она равна:

  • для пропана – от 504 до 588 °C;
  • для бутана – от 430 до 569 °C.

При этих значениях температуры газ может воспламениться даже при отсутствии открытого огня – если имеются предметы, которые нагреты до высокой температуры, но еще не светятся.

Теплота сгорания

Этот параметр характеризует количество тепла, выделяемое при сгорании 1 м3 газа. Он равен:

  • для пропана – 22…24 тыс. ккал. (91…99 МДж/ м3);
  • для бутана – 28…31 тыс. ккал. (118…128 МДж/ м3).

Пределы взрываемости

Это очень важная с точки зрения безопасности характеристика. При определенном соотношении смесь газов с воздухом или кислородом может взрываться. Вероятность взрыва зависит от скорости распространения огня. Чем она выше, тем опаснее ситуация. В свою очередь скорость распространения огня зависит от пропорции газов. Нужно иметь в виду, что при увеличении температуры границы взрываемости расширяются.

При смешении газа с воздухом он становится взрывоопасным при следующих соотношениях:

  • пропан – 2,1%…9,5%;
  • бутан – 1,5%…8,5%;
  • смесь – 1,5%…9,5%.

Плотность

Плотность газообразной фазы в норме составляет:

  • пропана – 2,019 кг/ м3;
  • бутана – 2,703 кг/ м3.

Плотность жидкой фазы – 0,5…0,6 кг/л.

Как видим, пары СУГ весят больше воздуха, плотность которого равна 1,29 кг/м3. Это приводит к тому, что при утечках газ собирается внизу помещения, где в относительно малом количестве может образовать с воздухом взрывоопасную смесь. Визуально это может быть похоже на дымку или стелющийся туман. При утечках из подземных коммуникаций и емкостей СУГ заполняют непроветриваемые углубления, подвалы, канализационные колодцы и остаются там довольно долго. Визуально обнаружить утечки трудно. Не выходя на поверхность, они растекаются под землей на довольно большие расстояния.

Объемное расширение

Объемное расширение жидкой фазы в 16 раз выше, нежели у воды. Это создает опасность разрыва баллона при увеличении температуры.

Степень сгораемости

Чтобы газ сгорал полностью, на 1 м3 его паров должно приходиться:

  • для пропана – 24 м3 воздуха или 5,0 м3 О2;
  • для бутана – 31 м3 воздуха или 6,5 м3 О2.

При испарении 1 кг жидкого газа образуется:

  • пропана – 0,51 м3 паров;
  • бутана – 0,386 м3 паров.

При испарении 1 л газа образуется:

  • пропана – 0,269 м3 паров;
  • бутана – 0,235 паров м3.

Скорость распространения огня

Пламя горящего бутана распространяется с максимальной скоростью 0,826 м/сек, пропана – 0,821 м/сек.

Цвет и запах

Чистые СУГ бесцветны и лишены запаха. Это создает опасность неконтролируемых утечек с последующим образованием взрывоопасных смесей. Чтобы облегчить своевременное обнаружение утечек, СУГ подвергают одоризации (приданию запаха) техническим этилмеркаптаном.

Пропорции газов

Для топливной смеси бутан является более калорийным топливом, а пропан выступает в качестве сжиженного газа, который испаряется при низких температурах. Поэтому соотношение пропана и бутана в смеси зависит от климатических условий региона, в которых пропан-бутан используется, а также времени года.

Чем ниже температура, тем больше пропана должно быть в смеси (не менее 70—80%), тогда пропан обеспечит наилучшее испарение газа и, следовательно, топливо будет стабильно и надежно подаваться к потребителю.

А вот летом можно использовать смесь с содержанием пропана, не превышающим 40%

Если вы набираете топливо летом, а использовать его планируете зимой, то обратите свое внимание на газ с 60-70-процентным содержанием пропана

Бутан (вещество)

Бутан имеет два изомера:

Физические свойства

Бутан — бесцветный горючий газ, со специфическим запахом, при нормальном давлении легко сжижаем от −0,5 °C, замерзает при −138 °C; при повышенном давлении и обычной температуре — легколетучая жидкость. Критическая температура +152 °C, критическое давление 3,797 МПа.

  • Растворимость в воде — 6,1 мг в 100 мл (для н-бутана, при 20 °C), значительно лучше растворяется в органических растворителях). Может образовывать азеотропную смесь с водой при температуре около 100 °C и давлении 10 атм.
  • Плотность жидкой фазы — 580 кг/м³
  • Плотность газовой фазы при нормальных условиях — 2,703 кг/м³, при 15 °C — 2,550 кг/м³
  • Теплота сгорания 45,8 МДж/кг (2657 МДж/моль (см.).

Нахождение и получение

Содержится в газовом конденсате и нефтяном газе (до 12 %). Является продуктом каталитического и гидрокаталитического крекинга нефтяных фракций. В лаборатории может быть получен по реакции Вюрца:

Сероочистка (демеркаптанизация) бутановой фракции

Прямогонную бутановую фракцию необходимо очищать от сернистых соединений, которые в основном представлены метил- и этил- меркаптанами. Метод очистки бутановой фракции от меркаптанов заключается в щелочной экстракции меркаптанов из углеводородной фракции и последующей регенерации щелочи в присутствии гомогенных или гетерогенных катализаторов кислородом воздуха с выделением дисульфидного масла.

Применение и реакции

При свободнорадикальном хлорировании образует смесь 1-хлор- и 2-хлорбутана. Их соотношение хорошо объясняется разницей в прочности связей С—Н в позиции 1 и 2 (425 и 411 кДж/моль).

При полном сгорании на воздухе образует углекислый газ и воду. Бутан применяется в смеси с пропаном в зажигалках, в газовых баллонах в сжиженном состоянии, где он имеет запах, так как содержит специально добавленные одоранты. При этом используются «зимние» и «летние» смеси с различным составом. Теплота сгорания 1 кг — 45,7 МДж (12,72 кВт·ч).

При недостатке кислорода образуется сажа, угарный газ или их смесь:

Фирмой DuPont разработан метод получения малеинового ангидрида из н-бутана при каталитическом окислении:

н-Бутан — сырьё для получения бутилена, 1,3-бутадиена, компонент бензинов с высоким октановым числом. Бутан высокой чистоты и особенно изобутан может быть использован в качестве хладагента в холодильных установках. Производительность таких систем немного ниже, чем фреоновых, но бутан безопасен для окружающей среды, в отличие от фреоновых хладагентов.

В пищевой промышленности бутан зарегистрирован в качестве пищевой добавки E943a, а изобутан — E943b, как пропеллент.

Биологические эффекты

Вдыхание бутана вызывает удушье и сердечную аритмию. При попадании на тело сжиженного газа или струи его испарений вызывает охлаждение до −20 °C, что крайне опасно при ингаляциях.

История

В 1863 году, французский химик Е. Caventou изолированного бутадиен от пиролиза из амилового спирта . Этот углеводород был идентифицирован как бутадиен в 1886 году после того, как Генри Эдвард Армстронг выделил его среди продуктов пиролиза нефти. В 1910 году русский химик Сергей Лебедев полимеризовал бутадиен и получил материал с каучукообразными свойствами. Однако этот полимер оказался слишком мягким, чтобы заменить натуральный каучук во многих областях применения, особенно в автомобильных шинах.

Бутадиеновая промышленность возникла в годы, предшествовавшие Второй мировой войне. Многие из воюющих стран понимали, что в случае войны они могут быть отрезаны от каучуковых плантаций, контролируемых Британской империей , и стремились уменьшить свою зависимость от натурального каучука. В 1929 году Эдуард Чункер и Вальтер Бок , работая в IG Farben в Германии, создали сополимер стирола и бутадиена, который можно было использовать в автомобильных шинах. Вскоре последовало мировое производство: бутадиен производился из зернового спирта в Советском Союзе и Соединенных Штатах и ​​из угольного ацетилена в Германии.

Физико-химические свойства

По своей структуре и характеристикам пищевой антифламинг Е-943a Бутан можно причислять к группе органических соединений, которые относятся к классу алканов. В свою очередь алканы представляют собой ациклические углеводы. Свое оригинальное название пищевой антифламинг Е-943a Бутан получил благодаря английскому названию масляной кислоты или butanic acid. Стоит отметить, что пищевой антифламинг Е-943a Бутан находится в газообразном агрегатном состоянии. Кроме того газ Бутан считается в больших концентрациях токсичным соединением, которое может привести к летальному исходу.
При воздействии большой концентрации пищевого антифламинга Е-943a Бутан на человека, смерть может наступить в результате дисфункции дыхательного аппарата. Как правило, газообразное соединение бутан образуется при обработке нефти и нефтепродуктов, а также природного газа. В свою очередь природный газ представляет собой смесь различных газообразных веществ, которые скапливаются в недрах Земли в результате анаэробного разложения различных органических веществ. Стоит особенно подчеркнуть, что пищевой антифламинг Е-943a Бутан как представитель углеводородных соединений считается опасным взрывчатым веществом.
Кроме того пищевой антифламинг Е-943a Бутан способен самовоспламенятся, причем в процессе горения соединений источает специфический характерный запах. Бутан хотя и относят к веществам 4-го класса опасности для человеческого организма, это соединение может оказывать наркотическое воздействие, а в больших количествах приводить к токсическому отравлению и смерти. В результате исследований медики пришли к выводу о том, что Е-943a способен оказывать тяжелое и стойкое вредное воздействие на нервную систему.

Чистый н-бутан

Чистый н-бутан при 100 С в присутствии А1С1з не подвергается изомеризации. Но достаточно ввести в смесь 2 43 % бутиленов, как начнется изомеризация бутана с образованием в равновесной смеси до 45 % изобутана.

Чистый н-бутан при 100 С в присутствии А1С1з не подвергается изомеризации. Но достаточно ввести в смесь 2 43 % бутиленов, как начинается изомеризация бутана с образованием в равновесной смеси до 45 % изобутана.

Химически чистый н-бутан содержал менее 0 2 / 0 изобутана и менее 0 01 % олефинов. В дальнейшем он очищался от олефина пропусканием над гранулированным хлористым алюминием при комнатной температуре, под атмосферным давлением с объемной скоростью, равной единице.

Схема лабораторной хроматографической установки для выделения бутенов.

Для выделения чистого н-бутана, изобутена, транс-бу-тена — 2, гыс-бутена-2 и бутадиена лучшим оказался носитель ИНЗ-600 фракции 0 5 — 1 мм, обработанный 30 % эфира ТЭГНМ.

Пайнз и Уокер показали, что изомеризация чистого н-бутана в присутствии А1С13 НС1 не происходит без прибавления олефинов ( или другого источника карбониевых ионов), если только при самой изомеризации не образуются олефины или подобные им вещества.

Пайнс и Уоккер , Облад и Горин показали, что очень чистый н-бутан при полном отсутствии олефина или кислорода не изомеризуется каталитической системой хлористый алюминий — хлористый водород, по-видимому, потому, что ион карбония в отсутствие олефина не образуется. Но изомеризации не происходит, если те же самые парафины контактируют с более устойчивыми кислыми материалами, например глиноземом, которые являются намного более слабыми кислотами. Однако, если на глинозем нанести небольшое количество платины, катализатор становится очень активным и действует селективно в отношении изомеризации парафина.

Первой стадией процесса является выделение и очистка бу-тиленов, а также получение практически чистого н-бутана, возвращаемого на дегидрирование. Катализат дегидрирования н-бутана компримируется и из него удаляются водород и низкокипящие примеси.

Первой стадией процесса является выделение и очистка бу-тиленов, а также получение практически чистого н-бутана, возвращаемого на дегидрирование.

Помимо введения алкенов и алкилгалогенидов в реакционную смесь имеются и другие способы промотировать изомеризацию чистого н-бутана. Эти методы, по-видимому, основаны на непрямом введении алкенов или алкилгалогенидов в реакционную смесь. Сопровождающий изомеризацию крекинг, вероятно, ведет к образованию алкенов или карбоний-ионов. Кислород расходуется в этом процессе. Это может быть объяснено двояко: а) по одному из возможных механизмов кислород окисляет бутан в бутильный карбоний-ион; б) кислород взаимодействует с галогенидом алюминия, в результате чего образуется некоторая форма оксигалогенида и галоид, который реагирует с н-бутаном и дает бутилгалогенид.

Схема установки для очистки — бутана.

Дьюара со смесью сухого льда с ацетоном ( температура около-35 С); 6 — предохранительная склянка; 8, 14 — банк с ледяной водой; IS — пустая склянка; IS-змеевиковый конденсатор; 17-сосуд Дьюара; / — приемник чистого н-бутана; I-V1 — краны.

Мабери и Худсон были, пожалуй, первыми исследователями, занявшимися изучением хлорирования я-бутана. Они хлорировали почти чистый н-бутан и получили, по их сообщению, только монохлорид, кипящий при температуре 68 — 69 С.

Роберте и Хамилл облучали смеси w — бутана и циклогексана. Выходы метана, измеренные для чистого н-бутана и смесей, содержащих 10 и 20 об. % цикло — СеН, составили 0 20; 0 09 и 0 03 соответственно.

Подготавливают прибор к работе, нагревают печь хроматермографа № 5 до температуры в максимуме 100 С и устанавливают ее в исходном верхнем положении. Устанавливают определенную скорость потока газа-носителя и наносят порцию чистого н-бутана или его смеси с воздухом. Устанавливают заданную скорость движения печи и включают механизм, опускающий ее вниз. Следят за температурой и выходом н-бутана. В момент достижения максимума пика н-бутана измеряют температуру, при которой происходит его десорбция, и полученное значение записывают.

Эффекты и проблемы со здоровьем [ править ]

Вдыхание бутана может вызвать эйфорию , сонливость , потерю сознания , асфиксию , сердечную аритмию , колебания артериального давления и временную потерю памяти при злоупотреблении непосредственно из контейнера под высоким давлением и может привести к смерти от удушья и фибрилляции желудочков . Он попадает в кровоток и в течение нескольких секунд вызывает интоксикацию. Бутан является наиболее распространенным летучим веществом в Великобритании и был причиной 52% смертей, связанных с растворителями, в 2000 году. Распыляя бутан прямо в горло, струя жидкости может быстро охладиться до -20 ° C (-4 ° F) за счет расширения, вызывая длительный ларингоспазм . Синдром », впервые описанный Бассом в 1970 году, является наиболее частой причиной смерти, связанной с растворителями, приводя к 55% известных смертельных случаев.

Физические свойства бутана:

Наименование параметра: Значение:
Цвет без цвета
Запах специфический характерный запах
Вкус без вкуса
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.) газ
Плотность (состояние вещества – жидкость, при 0 °C), кг/м3 601,2
Плотность (состояние вещества – газ, при 0 °C), кг/м3 2,672
Температура плавления н-бутана, °C -138,4
Температура плавления изобутана, °C -159,6
Температура кипения н-бутана, °C -0,5
Температура кипения изобутана, °C -11,7
Температура самовоспламенения, °C 372
Критическая температура*, °C 152,01
Критическое давление, МПа 3,797
Критический удельный объём,  м3/кг 228
Взрывоопасные концентрации смеси газа с воздухом, % объёмных от 1,4 до 9,3
Удельная теплота сгорания, МДж/кг 45,8
Молярная масса, г/моль 58,12

* при температуре выше критической температуры газ невозможно сконденсировать ни при каком давлении.

Ссылки [ править ]

  1. ^
  2. Хофманн, Август Вильгельм Фон (1 января 1867 г.). «I. О действии трихлорида фосфора на соли ароматических монаминов». Труды Лондонского королевского общества . 15 : 54–62. DOI . S2CID .
  3. ^ «Передний вопрос». Номенклатура органической химии: Рекомендации ИЮПАК и предпочтительные названия 2013 (Синяя книга) . Кембридж: Королевское химическое общество . 2014. с. 4. DOI . ISBN
  4. WB Kay (1940). «Соотношение давление-объем-температура для н-бутана». Промышленная и инженерная химия . 32 (3): 358–360. DOI .
  5. . США: Matheson Tri-Gas Incorporated. 5 февраля 2011 года Архивировано из на 1 октября 2011 года . Проверено 11 декабря 2011 года .
  6. . www.chem.qmul.ac.uk .
  7. Уоттс, Х. (1868). Словарь по химии . 4 . п. 385.
  8. Maybery, CF (1896). «О составе серных нефтей Огайо и Канады». Труды Американской академии искусств и наук . 31 : 1–66. DOI . JSTOR .
  9. (2009). «Разница энтальпии между конформациями нормальных алканов: исследование спектроскопии комбинационного рассеяния н- пентана и н- бутана». J. Phys. Chem. . 113 (6): 1012–9. DOI . PMID .
  10. . houstonchronicle.com . 21 июня 2016 . Проверено 20 сентября 2018 года .
  11. . Сканк Фарм Исследования . 2013-08-26 . Проверено 5 декабря 2019 .
  12. . thcfarmer.com. 19 Декабрь 2009 . Дата обращения 3 октября 2016 .
  13. Филд-Смит М., Бланд Дж. М., Тейлор Дж. С. и др. . Департамент общественного здравоохранения. Лондон: Медицинская школа Святого Георгия. Архивировано из 27 марта 2007 года.
  14. ^ Рэмси Дж., Андерсон Х.Р., Блур К. и др. (1989). «Введение в практику, распространенность и химическую токсикологию злоупотребления летучими веществами». Hum Toxicol . 8 (4): 261–269. DOI . PMID . S2CID .
  15. Басс М. (1970). «Внезапная нюхательная смерть». JAMA . 212 (12): 2075–2079. DOI . PMID .

Реакции [ править ]

Спектр синего пламени горелки с бутаном, показывающий излучение полосы молекулярных радикалов CH и полосы C 2 Swan

Когда кислорода много, бутан горит с образованием двуокиси углерода и водяного пара; когда кислород ограничен, также может образоваться углерод ( сажа ) или оксид углерода . Бутан плотнее воздуха.

Когда кислорода достаточно:

2 C 4 H 10 + 13 O 2 → 8 CO 2 + 10 H 2 O

Когда кислород ограничен:

2 C 4 H 10 + 9 O 2 → 8 CO + 10 H 2 O

По весу бутан содержит около 49,5  МДжкг (13,8  кВтч / кг; 22,5 МДж / фунт ) или по объему жидкости 29,7 мегаджоулей на литр (8,3 кВтч / л; 112 МДж / галлон США; 107000 БТЕ / галлон США).

Максимальная адиабатическая температура пламени бутана с воздухом составляет 2243 К (1970 ° C; 3578 ° F).

н- Бутан является сырьем для каталитического процесса DuPont получения малеинового ангидрида

2 СН 3 СН 2 СН 2 СН 3 + 7 О 2 → 2 С 2 Н 2 (СО) 2 О + 8 Н 2 О

н- Бутан, как и все углеводороды, подвергается свободнорадикальному хлорированию, давая как 1-хлор-, так и 2-хлорбутаны, а также более сильно хлорированные производные. Относительные скорости хлорирования частично объясняются разной энергией диссоциации связи , 425 и 411 кДж / моль для двух типов связей CH.

Дегидрирование бутана

Дегидрирование – это реакция отщепления атомов водорода.

В качестве катализаторов дегидрирования используют никель Ni, платину Pt, палладий Pd, оксиды хрома (III), железа (III), цинка и др.

При дегидрировании алканов, содержащих от 2 до 4 атомов углерода в молекуле, разрываются связи С–Н у соседних атомов углерода и образуются двойные и тройные связи.

Например, при дегидрировании бутана преимущественно образуются бутен-2 (бутилен) или бутин-2.

При дегидрировании бутана под действием металлических катализаторов образуется смесь продуктов. Преимущественно образуется бутен-2:

Если бутан нагревать в присутствии оксида хрома (III), преимущественно образуется бутадиен-1,3:

Что такое бутан?

Бутан – это так называемый сжиженный природный (нефтяной) газ, который получается при перегонке нефти. 

Как и пропан, бутан по своей природе является газом, но это относится не ко всем горючим газам. Бутан становится жидким при -0,5 градусах Цельсия или ниже, в то время как пропан становится жидким только при -40 градусах Цельсия. Другим большим отличием между бутаном и пропаном является давление: при температуре 20 градусов Цельсия бутан имеет давление около 1,2 бар, тогда как пропан не менее 7,0 бар.

Оба изомера бутана являются газами при комнатной температуре, потому что (n-) бутан имеет температуру плавления -138 C и температуру кипения -0,5 C, а метилпропан (изобутан) имеет температуру плавления -160 C и температуру кипения −12 °С. Бутан практически не растворим в воде (90 мг / л). Оба изомера ведут себя схожим образом: они легко воспламеняются, не обесцвечивают бромную воду и раствор перманганата калия, подвергаются воздействию только галогенов хлора и брома под воздействием света.

Сфера применения газа

Пропан-бутан представляет собой уникальное вещество на газовой основе, которое имеет в своем составе одноименные молекулы.

Общепризнанная химическая формула пропана состоит из молекул и атомов двух основных составляющих – пропана (С3Н8) и бутана (С4Н10).

Широко используемый в бытовых целях, этот газ применяется практически везде – начиная с приготовления еды на сковороде, и заканчивая резкой толстого слоя металла, активным использованием его на различных производствах вообще.

Также им все чаще заправляют свои автомобили люди, отказавшиеся от топлива на бензиновой основе.

Химические свойства бутана:

Бутан трудно вступает в химические реакции. В обычных условиях не реагирует с концентрированными кислотами, расплавленными и концентрированными щелочами, щелочными металлами, галогенами (кроме фтора), перманганатом калия и дихроматом калия в кислой среде.

Химические свойства бутана аналогичны свойствам других представителей ряда алканов. Поэтому для него характерны следующие химические реакции:

  1. 1. каталитическое дегидрирование бутана:

CH3-CH2-CH2-CH3 → CH2=CH-CH2-CH3 + H2 (kat = Pt, Ni, Al2O3, Cr2O3, повышенная to).

  1. 2. галогенирование бутана:

CH3-CH2-CH2-CH3 + Br2 → CH3-CHBr-CH2-CH3 + HBr (hv или повышенная to);

CH3-CH2-CH2-CH3 + I2 → CH3-CHI-CH2-CH3 + HI (hv или повышенная to).

Реакция носит цепной характер. Молекула брома или йода под действием света распадается на радикалы, затем они атакуют молекулы бутана, отрывая у них атом водорода, в результате этого образуется свободный бутил  CH3-CH·-CH3, который сталкиваются с молекулами брома (йода), разрушая их и образуя новые радикалы йода или брома:

Br2 → Br·+ Br· (hv); – инициирование реакции галогенирования;

CH3-CH2-CH2-CH3 + Br· → CH3-CH·-CH2-CH3 + HBr; – рост цепи реакции галогенирования;

CH3-CH·-CH2-CH3 + Br → CH3-CHBr-CH2-CH3 + Br·;

CH3-CH·-CH2-CH3 + Br· → CH3-CHBr-CH2-CH3; – обрыв цепи реакции галогенирования.

Галогенирование — это одна из реакций замещения. В первую очередь галогенируется наименее гидрированый атом углерода (третичный атом, затем вторичный, первичные атомы галогенируются в последнюю очередь). Галогенирование бутана проходит поэтапно – за один этап замещается не более одного атома водорода.

CH3-CH2-CH2-CH3 + Br2 → CH3-CHBr-CH2-CH3 + HBr (hv или повышенная to);

CH3-CHBr-CH2-CH3 + Br2 → CH3-CBr2-CH2-CH3 + HBr (hv или повышенная to);

и т.д.

Галогенирование будет происходить и далее, пока не будут замещены все атомы водорода.

  1. 3. нитрование бутана:

См. нитрование этана.

  1. 4. окисление (горение) бутана:

При избытке кислорода:

2C4H10 + 13O2 → 8CO2 + 10H2O.

При нехватке кислорода вместо углекислого газа (СО2) получается оксид углерода (СО), при еще меньшем количестве кислорода выделяется мелкодисперсный углерод сажа (в различном виде, в т.ч. в виде графена, фуллерена и пр.) либо их смесь.

  1. 5. сульфохлорирование бутана:

C4H10 + SO2 + Cl2 → C4H9-SO2Cl + … (hv).

  1. 6. сульфоокисление бутана:

2C4H10 + 2SO2 + О2 → 2C4H9-SO2ОН (повышенная to).

Структурная изомерия

Для  бутана характерна структурная изомерия – изомерия углеродного скелета.

Структурные изомеры — это соединения с одинаковым составом, которые отличаются порядком связывания атомов в молекуле, т.е. строением молекул.

Изомеры углеродного скелета отличаются строением углеродного скелета.

Например.

Для н-бутана (алкана с линейной цепью) существует изомер с разветвленным углеродным скелетом – изобутан

Для бутана не характерна пространственная изомерия. 

Бутан – предельный углеводород, поэтому он не может вступать в реакции присоединения.

Для бутана характерны реакции:

  • разложения,
  • замещения,
  • окисления.

Разрыв слабо-полярных связей С – Н протекает только по гомолитическому механизму с образованием свободных радикалов.

Поэтому для бутана характерны радикальные реакции.

Бутан устойчив к действию сильных окислителей (KMnO4, K2Cr2O7 и др.), не реагирует с концентрированными кислотами, щелочами, бромной водой.

Ссылки [ править ]

  1. ^
  2. Хофманн, Август Вильгельм Фон (1 января 1867 г.). «I. О действии трихлорида фосфора на соли ароматических монаминов». Труды Лондонского королевского общества . 15 : 54–62. DOI . S2CID .
  3. ^ «Передний вопрос». Номенклатура органической химии: Рекомендации ИЮПАК и предпочтительные названия 2013 (Синяя книга) . Кембридж: Королевское химическое общество . 2014. с. 4. DOI . ISBN
  4. WB Kay (1940). «Соотношение давление-объем-температура для н-бутана». Промышленная и инженерная химия . 32 (3): 358–360. DOI .
  5. . США: Matheson Tri-Gas Incorporated. 5 февраля 2011 года Архивировано из на 1 октября 2011 года . Проверено 11 декабря 2011 года .
  6. . www.chem.qmul.ac.uk .
  7. Уоттс, Х. (1868). Словарь по химии . 4 . п. 385.
  8. Maybery, CF (1896). «О составе серных нефтей Огайо и Канады». Труды Американской академии искусств и наук . 31 : 1–66. DOI . JSTOR .
  9. Роман М. Балабин (2009). «Разница энтальпии между конформациями нормальных алканов: исследование спектроскопии комбинационного рассеяния н- пентана и н- бутана». J. Phys. Chem. . 113 (6): 1012–9. DOI . PMID .
  10. . houstonchronicle.com . 21 июня 2016 . Проверено 20 сентября 2018 года .
  11. . Сканк Фарм Исследования . 2013-08-26 . Проверено 5 декабря 2019 .
  12. . thcfarmer.com. 19 Декабрь 2009 . Дата обращения 3 октября 2016 .
  13. Филд-Смит М., Бланд Дж. М., Тейлор Дж. С. и др. . Департамент общественного здравоохранения. Лондон: Медицинская школа Святого Георгия. Архивировано из 27 марта 2007 года.
  14. ^ Рэмси Дж., Андерсон Х.Р., Блур К. и др. (1989). «Введение в практику, распространенность и химическую токсикологию злоупотребления летучими веществами». Hum Toxicol . 8 (4): 261–269. DOI . PMID . S2CID .
  15. Басс М. (1970). «Внезапная нюхательная смерть». JAMA . 212 (12): 2075–2079. DOI . PMID .

Бутан молярная масса

Истинная, эмпирическая, или брутто-формула: C4H10

Химический состав Бутана

Молекулярная масса: 58,124

Бута́н (C4H10) — органическое соединение, углеводород класса алканов. В химии название используется в основном для обозначения н-бутана. Такое же название имеет смесь н-бутана и его изомера изобутана CH(CH3)3. Название происходит от корня «бут-» (французское название масляной кислоты — acide butyrique, от др.-греч. βούτῡρον, масло) и суффикса «-ан» (принадлежность к алканам). Вдыхание бутана вызывает дисфункцию лёгочно-дыхательного аппарата. Содержится в природном газе, образуется при крекинге нефтепродуктов, при разделении попутного нефтяного газа, «жирного» природного газа. Как представитель углеводородных газов пожаро- и взрывоопасен, малотоксичен, имеет специфический характерный запах, обладает наркотическими свойствами. По степени воздействия на организм газ относится к веществам 4-го класса опасности (малоопасные) по ГОСТ 12.1.007-76. Вредно воздействует на нервную систему.

Бутан — бесцветный горючий газ, со специфическим запахом, при нормальном давлении легко сжижаем от −0,5 °C, замерзает при −138 °C; при повышенном давлении и обычной температуре — легколетучая жидкость. Критическая температура +152 °C, критическое давление 3,797 МПа.

  • Растворимость в воде — 6,1 мг в 100 мл (для н-бутана, при 20 °C), значительно лучше растворяется в органических растворителях). Может образовывать азеотропную смесь с водой при температуре около 100 °C и давлении 10 атм.
  • Плотность жидкой фазы — 580 кг/м³
  • Плотность газовой фазы при нормальных условиях — 2,703 кг/м³, при 15 °C — 2,550 кг/м³
  • Теплота сгорания 45,8 МДж/кг (2657 МДж/моль).

Содержится в газовом конденсате и нефтяном газе (до 12 %). Является продуктом каталитического и гидрокаталитического крекинга нефтяных фракций. В лаборатории может быть получен по реакции Вюрца.

Сфера применения газа

Пропан-бутан представляет собой уникальное вещество на газовой основе, которое имеет в своем составе одноименные молекулы.

Общепризнанная химическая формула пропана состоит из молекул и атомов двух основных составляющих – пропана (С3Н8) и бутана (С4Н10).

Широко используемый в бытовых целях, этот газ применяется практически везде – начиная с приготовления еды на сковороде, и заканчивая резкой толстого слоя металла, активным использованием его на различных производствах вообще.

Также им все чаще заправляют свои автомобили люди, отказавшиеся от топлива на бензиновой основе.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector